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Abstract—Video-to-audio (V2A) generation aims to produce
corresponding audio given silent video inputs. This task is
particularly challenging due to the cross-modality and sequential
nature of the audio-visual features involved. Recent works have
made significant progress in bridging the domain gap between
video and audio, generating audio that is semantically aligned
with the video content. However, a critical limitation of these
approaches is their inability to effectively recognize and handle
multiple scenes within a video, often leading to suboptimal audio
generation in such cases. In this paper, we first reimplement a
state-of-the-art V2A model with a slightly modified light-weight
architecture, achieving results that outperform the baseline. We
then propose an improved V2A model that incorporates a scene
detector to address the challenge of switching between multiple
visual scenes. Results on VGGSound show that our model can
recognize and handle multiple scenes within a video and achieve
superior performance against the baseline for both fidelity and
relevance.

Index Terms—audio generation, video to audio, machine learn-
ing

I. INTRODUCTION

In the era of Artificial Intelligence-Generated Content
(AIGC), there has been rapid advancement in various types of
generative AI technologies. Most commonly known generative
AI systems, such as ChatGPT for language modeling [1], Sta-
ble Diffusion for text-to-image generation [2], and AudioLDM
for text-to-audio generation [3], primarily utilize text as the
main prompting modality.

Video-to-audio (V2A) generation, while not a new topic,
presents unique challenges due to its requirement for cross-
modal feature transformation. Early studies aiming to bridge
the visual and acoustic domains have largely concentrated
on image-to-audio generation [4]–[6]. However, video data,
conceptualized as sequences of images extended along the
temporal dimension, introduces additional complexity. Initial
V2A research efforts have typically focused on generating
audio within more inclusive domains rather than targeting
general sound synthesis [7].

Recent advancements have explored various approaches to
improve cross-modal and joint visual-audio generation. For
instance, ”Seeing and Hearing” [8] developed an optimization-
based framework for integrated visual and audio generation.
SpecVQGAN [9] trained a codebook for audio and utilized

discrete tokens predicted from video data to synthesize cor-
responding audio outputs.Diff-Foley [10] proposed a way to
generate audio from video utilizing latent diffusion model.
Wang et al. introduced V2A-Mapper [11], which leverages
multiple foundation models including CLIP [12], CLAP [13],
and AudioLDM [3] to generate audio from visual input.
CLIP and CLAP employ image-text and audio-text pairs,
respectively, to train models capable of extracting semantic-
level features from images and audio. These models effectively
bridge audio and video within a shared textual space, using
the mapper to predict audio features based on the video inputs.
Subsequently, these audio features condition on a diffusion
model, pre-trained on CLAP-audio pairs, to generate audio
that semantically aligns with the video content.

Despite these advances, existing models exhibit certain
limitations. One notable issue is the lack of temporal syn-
chronization between video and audio, even when utterance-
level semantic alignment is achieved. Recent efforts have
sought to address this challenge. For example, SyncFusion
[14] introduced an onset detector and incorporated onset
embeddings from videos alongside the CLAP features of audio
to enhance synchronization. Another approach by Wang et
al. [15] employed a non-autoregressive vector field estima-
tor based on a feed-forward transformer and implemented
channel-level cross-modal feature fusion to achieve robust
temporal alignment. MaskVAT [16] combined a general audio
codec with a sequence-to-sequence generative model, resulting
in audio outputs that are both semantically and temporally
aligned with the video. FoleyCrafter [17] proposed a Semantic
Adapter (SA) and Temporal Controller (TC), where the TC
includes a timestamp detector and a timestamp-based adapter
to improve audio-video synchronization.

Another critical issue with current models is their inability
to accurately generate audio when the input video contains
multiple scenes. This limitation is particularly significant given
the growing demand for generating audio for videos with
longer durations and multiple scenes. To address this chal-
lenge, we employ change point detection to handle audio gen-
eration for videos with multiple scenes. Our approach builds
upon the framework of Wang et al. [11] with modifications to
the mapper architecture. Through the exploration of structures,
we found that even relatively simple mapper architectures can



Fig. 1. Overview of our V2A model. Left: The training process of V2A-SceneDetector. We utilize pretrained CLIP and CLAP models for feature extraction.
By utilizing scene detector, we can identify the scene information and scene boundary between scenes for audio segmentation. Right: Inference pipeline.
The top one shows the pipeline with scene segmentation. Sharing the preprocess with training process, we condition on the predicted CLAP embedding to
generate audio via AudioLDM. the bottom shows the process of inference without scene segmentation.

achieve satisfactory results. By incorporating scene segmen-
tation techniques to detect and segment scenes within the
original dataset, our model produces audio with higher fidelity
and better semantic alignment than the baseline models, owing
to the increased purity and semantic consistency of the data.
The samples and codes for our work are available1.

II. METHOD

A. Scene Detector

We aim to detect scene boundaries in a sequence of
frame embeddings using change point detection. Let X =
[x1,x2, . . . ,xT ] ∈ RT×D represent the sequence of frame
embeddings, where T is the number of frames, and D is the
embedding dimension (e.g., 512 for CLIP embeddings).

The self-similarity matrix S ∈ RT×T is defined by the inner
product between all pairs of embeddings:

Si,j = xi · xj =

D∑
k=1

xi,k · xj,k, for i, j = 1, 2, . . . , T.

1https://1mageyi.github.io/V2A-SceneDetector.demo/

To enhance the detection of changes, we center the self-
similarity matrix by subtracting the mean of rows and
columns:

Scentered = S− mean(S, axis = 0)− mean(S, axis = 1)⊤.

Next, we compute the difference between consecutive rows of
the centered similarity matrix to capture changes over time:

∆Si =

T∑
j=1

|Si,j − Si+1,j | , for i = 1, 2, . . . , T − 1.

This yields a sequence ∆S = [∆S1,∆S2, . . . ,∆ST−1] which
quantifies the change between consecutive frames. To identify
significant changes, we detect peaks in ∆S. Peaks correspond
to potential scene boundaries and are identified using a thresh-
old τ , which scales the standard deviation of ∆S:

Peaks = {i | ∆Si > τ · σ∆S},

where σ∆S is the standard deviation of ∆S, and τ is an
adjustable threshold factor. Visual scene boundaries are de-
termined by the detected peaks. Define the scene boundaries
{(sk, ek)} such that:

• Each scene starts at sk (either 0 or right after a peak).

https://1mageyi.github.io/V2A-SceneDetector.demo/


• Each scene ends at ek (right before the next peak or at
the final frame).

The final set of scenes is:

{(sk, ek)} = {(0, p1 − 1), . . . , (pn−1, pn − 1), (pn, T − 1)},

where pi are the indices of detected peaks in the sequence ∆S.
This approach allows for dynamic and adjustable detection of
scenes by controlling the sensitivity of peak detection via the
threshold τ .

B. V2A-MLP

TABLE I
ARCHITECTURE OF V2A-MLP

Layer Input Dimension Output Dimension
Linear 512 1024
ReLU 1024 1024
Linear 1024 512
Linear 512 512
Linear 512 512

We adopt the pipeline outlined in [11] to train our baseline
model. In the original work [11], a diffusion-based transformer
[18] is employed to train the mapper. In contrast, our approach
utilizes a multi-layer perceptron (MLP) architecture for the
mapper. Specifically, we use pre-trained CLAP and CLIP
encoders to extract audio and video embeddings from the
input videos. Our MLP-based mapper is trained using Mean
Squared Error (MSE) loss to align the video features with the
corresponding audio features.

C. V2A-SceneDetector

To enhance the V2A architecture, we integrate a scene de-
tector, as illustrated in Figure 1. This detector identifies visual
scene boundaries by analyzing CLIP embeddings extracted
from each frame of the video. Once the scene boundaries are
identified, we segment both the audio and CLIP sequences into
subparts, ensuring that each segment of the video corresponds
to a single scene. The mapper is then trained separately on
these segmented and aligned audio and video features, thereby
improving the model’s ability to generate scene-specific audio
content.

D. Inference

We propose two inference methods for our V2A model.
The first method, without scene segmentation, adheres to the
pipeline described in [11]. In this approach, CLIP features
are extracted from the input video and aggregated to form a
comprehensive video feature. The mapper then predicts the
corresponding CLAP embedding, which is subsequently used
by AudioLDM to generate audio.

The second method incorporates scene segmentation. Using
the scene detector, we identify the scene boundaries within the
video and generate audio for each scene independently. The
resulting audio segments are then combined into a single audio
file that corresponds to the entire video. This approach aims
to enhance the temporal alignment and contextual relevance

of the generated audio, particularly in videos with multiple
scenes.

III. EXPERIMENTS

A. Dataset

We utilize the VGGSound video dataset [19] for training
and testing. VGGSound comprises 199,176 ten-second video
clips sourced from YouTube. Following the data split method
from [11], we use 183,730 videos for training and 15,446
for testing. The original audio sample rate in the dataset is
44,100 Hz; however, we downsample the audio to 16,000 Hz
to enhance computational efficiency and ensure consistency in
metric comparisons.

B. Metric

To evaluate the fidelity of the generated audio, we use the
Mean KL Divergence (MKL) [9], Fréchet Distance (FD), and
Fréchet Audio Distance (FAD) [20] and Log-Spectral Dis-
tance (LSD) [21]. MKL measures the divergence between the
probability distributions of the features of the generated and
real audio. FD measures the distance between the multivariate
Gaussians fitted to embeddings of real and generated samples,
capturing both mean and covariance differences. Evaluation
tools from [3] are employed for these tasks. LSD is a metric
used to evaluate the similarity between two audio signals
by measuring the difference between their log-magnitude
spectrograms. It helps assess the quality of generated audio by
quantifying how closely it matches real audio in the frequency
domain, making it useful for evaluating general audio quality
and fidelity. Additionally, we use the CLIP Score, as in [11], to
assess the semantic relevance between the generated audio and
real audio. Wav2CLIP [22] is used to extract CLIP embeddings
from the generated audio. We compute the cosine similarity
between these embeddings and each frame of the real video,
averaging the results to obtain the CLIP score for each audio
sample. The mean CLIP score of all generated audio samples
is reported as the final result.

C. Experiment settings

For our experiments, we employ the ”ViT-B/32” pretrained
checkpoint as the CLIP model [12] and the ”audioldm-s-full”
version of the AudioLDM model [3] with guidance scale of
4.5. The CLAP encoder [13] is set to the ”htsat-tiny” model
to ensure alignment with AudioLDM. The V2A-MLP mapper
utilizes the MLP architecture specified in Table I , with mean
pooling as the aggregation method, denoted by σ. We optimize
the models using the AdamW optimizer with a learning rate
of 0.0001.

In the V2A-SceneDetector configuration, we set the scene
detector threshold to 5 to achieve general scene detection
accuracy. Video segments are filtered by validating their du-
ration; segments shorter than 2 seconds are considered invalid
and excluded from training. This filtering process yielded
approximately 210,000 valid training samples. Both the V2A-
MLP and V2A-SceneDetector models are trained for 100
epochs on this dataset.



TABLE II
MODEL PERFORMANCE METRICS

Model Scene Segment FD (↓) MKL (↓) CLIP-Score (×10−2 ↑) FAD (↓) LSD (↓)

Reference - 0 0 6.047 0 0
Diff-Foly - 21.659 3.173 7.284 6.522 3.020
V2A-Mapper - 11.835 2.686 8.652 1.029 1.456

V2A-MLP (ours) w/o segment 19.0034 2.395 8.495 3.0832 1.387
w segment 17.366 2.401 7.632 3.524 1.368

V2A-SceneDetector (ours) w/o segment 14.6492 2.248 9.056 2.433 1.400
w/ segment 10.742 2.244 8.527 2.224 1.358

For ”reference”, we evaluate the matric using the real audio to obtain the reference value for comparision.

For testing, we evaluate the models using four variants:
V2A-MLP, V2A-SceneDetector, V2A-MLP with scene seg-
mentation, and V2A-SceneDetector with scene segmentation.

D. Results

We benchmark our models against state-of-the-art (SOTA)
V2A systems using samples generated by [11] and test audio
produced with Diff-Foley [10] from the VGGSound dataset.
For the generation process, we set the step parameter to 25
and the guidance scale to 4.5.

Our evaluation reveals that the lightweight V2A-MLP model
achieves comparable results to SOTA models in terms of
MKL, LSD and FD and improvements in MKL. The inte-
gration of the scene detector further enhances performance,
with improvements of up to 24% in relevance (CLIP score)
and notable advancements in fidelity. Crucially, our model
demonstrates an enhanced ability to handle videos containing
multiple scenes. Unlike previous models, which often struggle
to generate semantically aligned audio for such videos, our
approach significantly reduces alignment errors, showcasing
its effectiveness in complex scenarios.

Within our four model variants, we observe notable differ-
ences:

1) Impact of Using Scene Detector: Comparing models
with and without the scene detector, we find that incorporating
the scene detector consistently improves performance across
all evaluation metrics. The observed improvements range from
6% to 26%. This enhancement can be attributed to the model’s
ability to learn from cleaner video segments that each contain
a single scene, thereby improving the fidelity and relevance of
the generated audio.

2) Impact of Scene Segmentation During Inference: Evalu-
ating the effect of applying scene segmentation at the inference
stage, we note that this approach leads to better fidelity as
measured by FD, MKL, FAD and LSD scores. However,
the CLIP score shows a slight decrease. This may be due
to some test videos containing multiple scenes, leading to
inconsistencies in the CLIP embeddings that could introduce
errors during inference.

IV. CONCLUSION AND FUTURE WORK

In this paper, we explored and extended the capabilities
of Video-to-Audio (V2A) generation by integrating scene

detection into the V2A framework. Building upon the baseline
established by [11], we introduced two variants of our model:
V2A-MLP and V2A-SceneDetector. We raise an approach
of visual scene detector, which process the frame embed-
ding sequence using boundary detection. Without external
feature extraction, the scene detector cam handle the scene
segmentation work at a relatively low cost. We demonstrated
that incorporating a scene detector significantly enhances
the performance of V2A models by enabling the system to
learn from more consistent and semantically coherent video
segments. This improvement is reflected in the substantial
gains across fidelity metrics such as FD, MKL and FAD.
Moreover, we investigated the impact of scene segmentation
during inference, finding that it generally boosts the fidelity
of the generated audio. More importantly, the integration of
scene detector provide the system ability to handle V2A tasks
where videos may contain multiple scenes.

Despite these advancements, the current models still face
several limitations. One issue is the variability in the duration
of video segments, while AudioLDM can only generate audio
in multiples of 2.5 seconds, necessitating the segmentation
of redundant parts of generated audio clips. Additionally,
transitions between scenes are not always smooth; the model
often struggles to recognize closely connected scenes through
sound, leading to abrupt audio shifts. Temporal synchro-
nization between video and generated audio remains another
significant challenge. Although recent works [14], [15], [17]
have made strides in addressing this issue, further research is
needed to maintain the sequential information from video and
generate audio with improved synchronization.

Future work will focus on refining these aspects, particularly
enhancing temporal alignment and addressing smoothness in
scene transitions. Furthermore, we will conduct comprehen-
sive comparisons with state-of-the-art methods to validate the
robustness and generalizability of our approach. Overall, our
results underscore the potential of scene-aware V2A models
in producing high-fidelity, semantically relevant audio that
closely aligns with the visual content, paving the way for more
sophisticated audio generation techniques in complex video
environments.
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distance: A metric for evaluating music enhancement algorithms,” 2019.

[21] M. Mandel, O. Tal, and Y. Adi, “Aero: Audio super resolution in the
spectral domain,” in ICASSP 2023-2023 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5, IEEE,
2023.

[22] H.-H. Wu, P. Seetharaman, K. Kumar, and J. P. Bello, “Wav2clip:
Learning robust audio representations from clip,” in ICASSP 2022-
2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 4563–4567, IEEE, 2022.


	Introduction
	Method
	Scene Detector
	V2A-MLP
	V2A-SceneDetector
	Inference

	Experiments
	Dataset
	Metric
	Experiment settings
	Results
	Impact of Using Scene Detector
	Impact of Scene Segmentation During Inference


	Conclusion and Future Work
	References

